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Tensor Matrix Vector Product

• Operator comes from the tensor product of a dense matrix 
with the identity matrix 

• Ax, Ay, Az are one directional operators (dense) 
• v and w are vectors of size n3

Avw =
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Two Ways 

• Build the large sparse matrix
Large sparse matrix of size (n3 x n3 for 3D case)
Slow memory bandwidth limited performance

• Just evaluate the action of A on v (without explicitly 
forming A) 

Done as dense matrix-matrix multiplication
Very efficient implementation
Huge savings in memory



Performance Issues for Sparse Matrix Vector Product

• Little data reuse
• High ratio of load/store to instructions/floating-point 

ops
• Stalling of multiple load/store functional units on the 

same cache line
• Low available memory bandwidth



Sparse Matrix Vector Algorithm: A General 
Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1)  {    // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}



Estimating the Memory Bandwidth 
Limitation

Assumptions

• Perfect Cache (only  compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores per cycle

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double)
// ia, N input (size n) and output (size m) vectors

+ Nnz* (sizeof(int) + sizeof(double)) 
// ja, and a arrays 

=  4*(m+nnz)  +  8*(N*(m+n)+ Nnz)



• Number of Floating-Point Multiply Add  (fmadd) Ops = N*nz
• For square matrices,

(Since Nnz >> n, Bytes transferred / fmadd  ~12/N)

• Similarly, for Block AIJ (BAIJ) format 

Estimating the Memory Bandwidth 
Limitation (Contd.)
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Second Choice: Dense Matrix-Matrix 
Multiplication

• We just need to store the small dense matrices of size 
nxn

for 3 dimensions memory needed is 3n2

Good ratio of flops to bytes: O(n4) operations O(n3) 
doubles
Gets better for higher dimensions



Evaluating the Tensor Product Terms

• Type 1

• Type 2

• Type 3

Loop over Type 2 for i = 1, p

[ ] [ ]nxmnxnnmnnm VAvAI =⊗ )(
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Performance of Tensor Matrix-Vector 
Multiplication – 3D case 

(Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
Memory Bandwidth Limited Bound 670 Mflops/s
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Performance of Tensor Matrix-Vector 
Multiplication – Fixed Mesh Points (n=7) 

(Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
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Performance of Tensor Matrix-Vector 
Multiplication –Long Reaction Co-ordinate
(51 points along reaction path and 7 points in other dimensions)
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Conclusions and Future Work

• Very efficient implementation 
Sparse matvecs take about 80% of execution time
We expect that tensor product implementation can 
improve the performance by a factor of three to five

• Possible to solve much larger problems because of 
huge savings in memory requirement

• Parallel implementation
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